《明史》

下载本书

添加书签

明史- 第46部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
  ▲黄道积度钤
  表格略
  推正交日辰时刻 置朔后症交日,加经朔,去纪法,以平交定差加减之,其日命甲子算外,小余依发敛加时求之,即得正交日辰时刻。如推次月,累加交终,满纪去之。如遇重交,再加交终。
  推四正赤道宿次 置冬至赤道日度,以气象限累加之,满赤道积度去之,为四正加时赤道日度。
  ▲赤道积度钤
  表格略
  推正交黄道在二至后初末限 置正交距冬至加时黄道积度,在半岁周已下为冬至后,已上减去半岁周,余为夏至后。又视二至后度分,在气象限已下为初限,已上用减半岁周,余为末限。推次月者,若本月初限,则累减月平交朔差,余为次月初限。不及减者,反减月平交朔差,余为次月末限。若本月末限则累加月平交朔差,为次月天限,至满气象限,以减半岁周,余为次月初限。
  推定差度 置初末限,以象极总差一分六零五五零八乘之,即为定差度。象极总差,是以象限除极差,其数宜为一十六分零五四四二。如推次月初限则累减,末限则累加,俱以极平差二十三分四九零二加减之。极平差,是以月平交朔差,乘象极总差,其数宜为二十三分五零四九。
  推距差度 置极差十四度六六,减去定差度,即得。求次月,以极平差加减之。初限加,末限减。
  推定限度 置定差度,以定极总差一分六三七一零七乘之,定极总差,是以极差除二十四度,其数宜为一度六三七一零七。所得视正交在冬至后为减,夏至后为加,皆置九十八度加减之,即得。
  推月道与赤道正交宿度 正交在冬至后,置春正赤道积度,以距差度初 限加末限减之,在夏至后,置秋正赤道积度,以距差初限减末限加之。得数,满赤道积度钤去之,即得。
  推月道与赤道正交后积度并入初末限 视月道与赤道正交所入某宿次,即置本宿赤道全度,减去月道与赤道正交宿度,差为正后积度。以赤道各宿全度累中之,满气象限去之,为半交后。又满去之,为中交后。再满去之,为半交后。视各交积度,在半象限以焉为初限,以上覆减象限,余为末限。
  推定差 置每交定限度,与初末限相乘,得数,千约之为度,即得。正交、中交后为加,半交后为减。
  推月道定积度及宿次 置月道与赤道各交后每宿积度,以定差加减之,为各交月道积度。加月道与赤道正交定宿度,共为正交后宿度。以前宿定积度减之,即得各交月道宿次。
  ▲活象限例
  置正交后宿次,加前交后半交末宿定积度。为活象限。如正交后宿次度少,加前交不及数,却置正交后宿次加气象限即是。如遇换交之月,置正交后宿次,以前交前半交末宿定积度加之,为换交活象限。假如前交正交是轸,后交正交是角,其前交欠一轸。求活象限者,置正交后宿次,不从翼下取定积度加之,仍于轸下取定积度也。又如前交、正交是轸,后交、正交是翼,其前交多一翼。求活象限者,置正交后宿次,不从翼下取定积度加之,仍于张下取定积度也。
  推相距日 置定上弦大余,减去定朔大余,即得。上弦至望,望至下弦,下弦至朔仿此。不及减者,加纪法减之。
  推定朔弦望入盈历及盈缩定差 置各月朔弦望入盈缩历,以朔弦望加减差加减之,并在步气朔内。为定盈缩历。视盈历在盈初限下为盈初已上用减半岁周,余为盈末限。缩历在缩初限已下为缩初限,已上用减半岁周,余为缩末限。依步气朔内求盈缩差,为盈缩定差。
  推定朔弦望加时中积 置定盈缩历,如是盈历在朔,便为加时中积,在上弦加气象限,在望加半岁周,在下弦加三象限。如是缩历在朔,加半岁周。在上弦加三象限,在望便为加时中积,在下弦加气象限,加后满周天去之。
  推黄朔弦望加时中定积度 置定朔弦望加时中积,以其下盈缩定差盈加缩之,即得。
  推赤道加时积度及宿次 置黄道加时定积度,在周天象限已下为至后,已上去之为分后,满两象限去之为至后,满三象限去之为分后。置分至后黄道积度,以立成内分至后积度减之,余以其下赤道度率乘之,如黄道度率而一,得数加入分至后积度,次以所去象限合之,为赤道加时定积度。置赤度加时定积度,加入天正冬至加时赤道日度,满赤道积度钤去之,得定朔弦望赤道加时宿次。
  推正半合交后积度 置定朔弦望加时赤道宿次,视朔弦望在何交后,正半、中半。即以交生积度,在朔望加时赤道宿前一宿者加之,即为正半中交后积度,满气象限去之,为正半中换交。
  推初末限 视正半中交后积度,在半象已下为初限,已上覆减气象限,余为末限。
  推月道与赤道定差 置其交定限度,与初末限相减相乘,所得,千约之为度,即定差。在正交、中交为加。在半交为减。
  推定朔弦望加时月道宿次 置定朔弦望加时月道定积度,取交后月道定积度,取交后月道定积度,在所置罕前一宿者减之,即得。遇转交则前积度多,所置积度少为不及减。从半转正,加其交活象限减之。从正转半,从半转中,从中转半,皆加气象限减之。
  推夜半入转日 置经朔弦望迟疾历,以定朔弦望加减差加减之。大疾历,便为定朔弦望加时入转日。在迟历,用加转中置定朔弦望加时入转日,以定朔弦望小余减之,为夜半入转日,遇入转日少不及减者,加转终减之。
  推加时入转度 置定朔弦望小余,去秒,取夜半入转日下转定度乘之,万约之为分,即得。
  ▲迟疾转定度钤
  表格略
  推定朔弦望夜半入转积度及宿次 置定朔弦望加时月道定积度,减去加时入转度,为夜半积度。如朔弦望加时定积度初换交,则不及减,半正相接,用活象限,正半、中半相接,用气象限加之,然后减加时入转度,则正者为后年,后年为中,中为前半,前半为正。置朔弦望夜半月道定积度,依推定朔弦望加时月道宿次法减之,为夜半宿次。
  推晨昏入转日及转度 置夜半入转日,以定盈缩历检立成日下晨分加之,为晨入转日满转终去之。置其日晨分,取夜半入转日下转定度乘之,万约为分,为晨转度。如求昏转日转度,依法检日下昏分,即得。
  推晨昏转积度及宿次 置朔弦望夜半月道定积度,加晨转度,为晨转积度。如求昏转积度,则加昏转度,满气象限去之,则换交。若推夜半积度之时,因朔弦望加时定积不及减转度,以半正相接,而加活象限之者,今复换正交,则以活象限减之。置晨转积度,依前法减之,为晨分宿次。置昏转积度,依法减之,为昏分宿次。
  推相距度 朔与上弦相距,上弦与望相距,用昏转积度。望与下弦相距,下弦与朔相距,用晨转积度。置后段晨昏转积度,视与前段同交者,竟以前段晨昏转积度减之,余为相距度。若后段与前段接两交者,从正入半,从半入中,从中入半,加气象限。从半入正,加活象限。然后以前段晨昏转积度减之。若后段与前段接三交者,其内无从半入正,则加二气象限,其内有从半入正,则加一活象限,一气象限,以前段晨昏转积度减之。
  推转定积度 置晨昏入转日,朔至弦,弦至望,用昏。望至弦, 弦至朔,用晨。以前段减后段,不及减者,加二十八日减之,为晨昏相距日。从前段下,于钤内验晨昏相距日同者,取其转定积度。若朔弦望相距日少晨昏相距日一日者,则于晨昏相距日同者,取其转积度,减去转定极差一十四度七一五四,余为前段至后段转定积度。
  ▲转定积度钤
  以下表格略
  推加减差 以相距度与转定积度相减为实,以其朔弦望相距目为法除之,所得视相距度多为加差,少为减差。
  推每日太阴行定度 置朔弦望晨昏入转日,视迟疾转定度钤日下转定度,累日以加减差加减之,至所距日而止,即得。
  推每日月离晨昏宿次 置朔弦望晨昏宿次,以每日太阴行度加之,满月道宿次减之,即得。
  ▲赤道十二宫界宿次
  表格略
  推月与赤道正交后宫界积度 视月道与赤道正交后,各宿积度宫界,某宿次在后,即以加之,便为某宫正交后宫界积度。求次宫者,累加宫率二十度四三八一,满气象限去之,各得某宫下半产交后宫界积度。
  推宫界定积度 视宫界度在半象限已下为初限,已上覆减气象限,余为末限。置某交定限度,与初末限相减、相乘,所得,千约之为度,在正交、中交为加差,在半交为减差。置宫界正半中交后积度,以定差加减之,为宫界定积度。
  推宫界宿次 置宫界定积度,于月道内取其在所置前一宿者减之之不及减者,加气象限减之。
  推每月每日下交宫时刻 置每月宫界宿次,减入交宫日下月离晨昏宿次。如不及减者,加宫界宿次前宿减之,余以日周乘之,以其日太阴行定度而一,得数,又视定盈缩历取立成日下晨昏分加之。晨加晨分,昏加昏分。
  如满日周交宫在次日,不满在本日,依发敛推之,即交宫时刻。
  ▲步中星
  推每日夜半赤道 置推到每日夜半黄道,见日躔。依法以黄道积度减之,余如黄道率而一,以加赤道积度。又以天正科至赤道加之,如在春正后,再加一象限,夏至后加半周天,秋正后加三象限,为每日夜半赤道积度。
  推夜半赤道宿度 置夜半赤道度,以赤道宿度挨次减之,为本日夜半赤道宿度。
  推晨距度及更差度 置立成内每日晨分,以三百六十六度二十五分七十五秒乘之为实,如日周而一,为晨距度。倍晨距度,以五除之,为更差度。
  推每日夜半中星 置推到每日夜半赤道宿度,加半周天,即夜半中唾积度。以赤道度挨次减之,为夜半中星宿度。
  推昏旦中星置夜半中星积度,减晨距度,为昏中星积度。以更差度累加之,为遂更及旦中星积度。俱满赤道宿度去之,即得。以晨分五之一,加们为更率。更率五而一为点率。凡昏分,即一更一点,累加更率为各更。凡交更即为一点,累加点率为各点。
 
  
  




       
张廷玉》明史》志第十二  历六




志第十二  历六
  大统历法三下推步
  ▲步交食
  交周日二十七日二十一刻二二二四。半之为交中日。
  交终度三百六十三度七九三四一九六。半之为交中日度。
  正交度三百五十七度六四。
  中交度一百八十八度零五。
  前准一百六十六度三九六八。
  后准一十五度五。
  交差二日三一八三六九。
  交望一十四日七六五二九六五。
  日食阳历限六度。定法六十。
  日食阴历限八度。定法八十。
  月食十三度五分。定法八十七。
  阳食限视定朔入交。
  零日六零已下 一十三日一零已上 在一十四日,不问小余,皆入食限。
  一十五日二零已下 二十五日六零已上 在二十六日、二十七日,不问小余,皆入食限。
  ▲阴食限视定望入交。
  一日二零已下 一十二日四零已上 在零日一十三日,不问小余,皆入食限。又视定朔小余在日出前、日入后二十分已上者,日食在夜。定望小余在日入前、日出后八刻二十分已上者,月食在昼。皆不必布算。
  推日食用数
  经朔  盈缩历  盈缩差 迟疾历 迟疾差 加减差 定朔 入交凡分以上皆全录之。定入迟疾历以加减差,加减迟疾即是。迟疾定限置定入迟疾历,以日转限一十二限二十分乘之,小余不用。定限行度以定限,取立成内行度,迟用迟,疾用疾,内减日行分八分二十秒,得之。日出分以盈缩历,从立成内取之,下同。日入分半昼分取立成内昏分,减去五千二百五十分,得之。岁前冬至时黄道宿次
  推交常度 置有食之朔入交凡分,以月平行度乘之,即得。
  推交定度 置交常度,以朔下盈缩差盈加缩减之,即得。
  推日食正交限度 视交定度在七度已下,三百四十一度已上者,食在正交。在一百七十五度已上,二百零二度已下者,食在中交。不在限内不食。
  推中前中后分 视定朔小余,在半日周已下,用减半日周,余为中前分。在半日周已上,减去半日周,余为中后分。
  推时差 置半日击,以中前、中后分减之,余以中后分乘之,所得以九千六百而一为时差。在中前为减,中后为加。
  推食甚定分 置定朔小余,以时差加减之,即得。
  推距午定分 置中前、中后分,加时差即得。但加不减。
  推食甚入盈缩历 置原得盈缩历,加入定朔大余及食甚定分,即得。
  推食甚盈缩差 依步气朔求之。
  推食甚入盈缩历行定度 置食甚入盈缩历,盈缩差,盈加缩减之,即得。
  推南北凡差 视食甚人盈缩历行定度,在周天象限已下为初限,已上与半岁周相减为末限。以初末限自之,如一千八百七十度而一,得数,置四度四十六分减之,余为南北凡差。
  推南北定差 置南北凡差,以距午定分乘之,如半昼分而一,以减凡差,余为南北定差。若凡差数少,即反减之。盈初缩末食在正交为减,中交为加。缩初盈末,食在正交为加,中交为减。如系凡差反减而得者,则其加减反是。
  推东西凡差 置半岁周,减去食甚入盈缩历行定度,余食甚入盈缩历行定度乘之,以一千八百七十除之为度,即东西凡差。
  推东西定差 置东西凡差,以距午定分乘之,如二千五百度而一,视得数在东西凡差以下,即为东西定差。若在凡差已上,倍凡差减之,余为定差。盈历中前,缩历 后者,正交减,中交加。盈历中后,缩中前者,正交加,中交减。
  推正交中定限度 视日食在正交者置正交度,在中交者置中交度,以南北东西二定差加减之,即得。
  推日食入阴阳历去闪前后度 视交定在正交定限度已下,减去交定度,余为阴历交前度。已上,减去正交定限度,余为阳历交后度。在中交定限度已下,减去交定度,余为阳历闪前度。已上,减去中交定限度,余为阴历后度。若交定在七度已下者加交终度,减去正交定限度,余为阳历交后度。
  推日食分秒 在阳历者,置阳食限六度,减去阳历交前、交后度,不及减者,不食。阴历同。余以定法六十而一。在阴历者,置阴食限八度,减去阴历交前、交后度,余以定法八十而一,即得。
  推定用分 置日食分秒与二十分相减相乘,为开方积。以平方法开之,为开方数。用五千七百四十分七因八百二十分也。乘之,如定限行度而一,即得。
  推初亏复圆时刻 置食甚定分,以定用分减为初亏,加为复圆。各依发敛加时,即时刻。
  推日食起复方位 阳历初亏西南,甚于正南,复于东南。阴历初亏西北,甚于正北,复于东北。若在八分以上,不分阴阳历皆亏正西,复东位。据午地而论
  推食甚日躔黄道宿次 置食甚入盈缩历行定度,在盈就为定积度,在缩加半岁周为定积度。置定积度,以岁前冬至加时黄道日度加之,满黄道积度钤去之,至不满宿次即食甚日躔。
  推日带食 视初亏食甚分,有在日出分已下,为晨刻带食。食甚复圆分,有
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架