《狭义与广义相对论浅说》

下载本书

添加书签

狭义与广义相对论浅说- 第6部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
一个更力全面的理论的道路,而在这个更为全面的理论中,原来的理论作为一个极限情况继续存在下去。
  在刚才讨论的关于光的传播的例子中,我们已经看到,广义相对论使我们能够从理论上推导引力场对自然过程的进程的影响,这些自然过程的定律在没有引力场时是已知的。但是,广义相对论对其解决提供了钥匙的最令人注意的问题乃是关于对引力场本身所满足的定律的研究,让我们对此稍微考虑一下。
  我们已经熟悉了经过适当选取参考物体后处于(近似地)“伽利略”形式的那种空时区域,亦即没有引力场的区域,如果我们相对于一个不论作何种运动的参考物体K’来考察这样的一个区域,那么相对于K’就存在着一个引力场,该引力场对于空间和时间是可变的。这个场的特性当然取决于为K'。选定的运动。按照广义相对论;普遍的引力场定律对于所有能够按这一方式得到的引力场都必须被满足,虽然绝不是所有的引力场都能够如此产生,我们仍然可以希望普遍的引力定律能够从这样的一些特殊的引力场推导出来。这个希望已经以极其美妙的方式实现了,但是从认清这个目标到完全实现它,是经过克服了一个严重的困难之后才达到的,由于这个问题具有很深刻的意义,我不敢对读者略而下谈,我们需要进一步推广我们对于空时连续区的观念。
  23.在转动的参考物体上的钟和量杆的行为
  到目前为止,我在广义相对论中故意避而不谈空间数据和时间数据的物理解释。因而我在论述中犯了一些潦草从事的毛病;我们从狭义相对论知道,这种毛病决不是无关重要和可以宽容的。现在是我们弥补这个缺陷的最适当的时候了;但是开头我就要提一下,这个问题对读者的忍耐力和抽象能力会提出不小的要求。
  我们还是从以前常常引用的十分特殊的情况开始,让我们考虑一个空时区域,在这里相对于一个参考物体K(其运动状态己适当选定)不存在引力场。这样,对于所考虑的区域而言,K就是一个伽利略参考物体,而且狭义相对论的结果对于K而言是成立的。我们假定参照另一个参考物体K'来考察同一个区域。
  设K',相对于K作匀速转动。为了使我们的观念确定,我们设想K',具有一个平面圆盘的形式,这个平面圆盘在其本身的平面内围绕其中心作匀速转动。在圆盘K’上离开盘心而坐的一个观察者感受到沿径向向外作用阶一个力;相对于原来的参考物体K保持静止的一个观察者就会把这个力解释为一种惯性效应(离心力)。但是,坐在圆盘上的观察者可以把他的回盘当作一个“:静止”的参考物体;根据广义相对性原理,他这样设想是正当的。他把作用在他身上的、而且事实上作用于所有其他相对于圆盘保持静止的物体的力,看作是一个引力场的效应二然而,这个引力场的空间分布,按照牛顿的引力理论,看来是不可能的。但是由于这个观察者相信广义相对论,所以这一点对他并无妨碍;他颇有正当的理由相信能够建立起一个普遍的引力定律——这一个普遍的引力定律不仅可以正确地解释众星的运动,而且可以解释观察者自己所经验到的力场。
  这个观字者在他的园盘上用钟和量杆做实验。他这样做的意图是要得出确切的定义来表达相对于圆盘K’的时间数据和空间数据的含义,这些定义是以他的观察为基础的,这样做他会得到什么经验呢?
  首先他取构造完全相同的两个钟,一个放在圆盘的中心。另一个放在圆盘的边缘)日而这两个钟相对于园盘是保持静止的。我们现在来问问我们自己,从非转动的伽利略参考物体厂的立场来看,这两个钟是否走得快慢一样:从这个参考物体去判断,放在圆盘中心的钟并没有速度,而由于圆盘的转动,放在圆盘边缘的钟相对于K是运动的。按照第12节得出的结果可知,第二个钟永远比放在圆盘中心的钟走得慢,亦即从K去观察,情况就会这样。显然,我们设想坐在圆盘中心那个钟旁边的一个观察者也会观察到同样的效应,因此;在我们的圆上,或者把情况说得更普遍一些,在每一个引力场中,一个钟走得快些或者慢些,要着这个钟(静止地)所放的位置如何。由于这个缘故,要借助于相对于参考物体静止地放置的钟来得出合理的时间定义是不可能的。我们想要在这样一个例子中引用我们早先的同时性定义时也遇到了同样的困难,但是我不想再进一步讨论这个问题了。
  此外,在这个阶段,空间坐标的定义也出现不可克服的困难,如果这个观察者引用他的标准量杆(与圆盘半径相比,一根相当短的杆),放在圆盘的边上并使杆与圆盘相切,那么,从伽利略坐标系去判断,这根杆的长度就小于1,因为,
  按照第12节,运动的物体在运动的方向发生收缩。另一方面,如果把量杆沿半径方向放在圆盘上,从K去判断,量杆下会缩短。那么,如果这个观察者用他的量杆先量度圆盘的圆周,然后量度圆盘的直径,两者相除,他所得到的商将不会是大家熟知的数π=3。14?,而是一个大一些的数;而对于一个相对于K保持静止的圆盘,这个操作和运算当然就会准确地得出π。这证明,在转动的圆盘上,或者普遍他说,在一个引力场中,欧几里得几何学的命题并不能严格地成立,至少是如果我们把量杆在一切位置和每一个取向的长度都算作1的话,因而关于直线的观念也就失去了意义:所以我们不能借助于在讨论狭义相对论时所使用的方法相对于圆盘严格地来了坐标x;y;z的定义;而只要事件的坐标和时间的定义还没有给出,我们就不能赋予(在其中出现这些事件的)任何自然律以严格的意义。
  这样,所有我们以前根据广义相对论得出的结论看来也就有问题。在实际情况中我们必须作一个巧妙的迂回才能够严格地应用广义相对论的公设。下面我将帮助读者对此作好准备。
  24欧几里得和非欧几里得连续区域
  一张大理石桌摆在我的面前,眼前展开了巨大的桌面。在这个桌面上,我可以这样地从任何一点到达任何其他一点,即连续地从一点移动到“邻近的”一点,井重复这个过程若干(许多)次,换言之,亦即无需从一点“跳跃”到另一点,我想读者一定会足够清楚地了解我这里所说的“邻近的”和“跳跃”是什么意思(如果他不过于咬文嚼字的话).我们把桌面描述为一个连续区来表示桌面的上述性质。
  我们设想已经做好了许多长度相等的小杆,它们的长度同这块大理石板的大小相比是相当短的。我说它们的长度相等的意思是,把其中之一与任何其他一个适合起来,它们的两端都能彼此重合,其次我们取四根小杆放在石板上,构成一个四边形(正方形),这个四边形的对角线的长度是相等的,为了保证对角线相等,我们另外用了一根小测杆。我们把几个同样的正方形加到这个正方形上,加上的正方形每一个都有一根杆是与第一个正方形共用的。我们对于这些正方形的每一个都采取同样的做法,直到最后整块石板都铺满了正方形为止。这个排列是这样的,一个正方形的每一边都隶属于两个正方形,每一个隅角都隶属于四个正方形。
  如果我们能够把这项工作做好而没有遇到极大的困难,那只要三个正方形相会于一隅角,那么第四个正方形的两个边
  就已经摆出;因此,这个正方形下余两边的排列位置也就已经完全确定下来,但是这个时候我就不能再调整这个四边形使它的两根对角线相等了.如果这两根对角线出于它们的自愿而相等,那么这是石板和小杆的特别恩赐,对此我只能怀着感激的心情而惊奇不己。如果这个作同法能够成功的话:那么这种令人惊奇的事情我们必然会经验到许多次。
  如果凡事都进行得真正顺利,那么我就说石板上的诸点对于小杆而言构成一个欧几里得连续区域,这里小杆曾当作“距离”(线间隔)使用。选取一个正方形的一个隅角作为“原点”我就能够用两个数来表示任一正方形的任一隅角相对于这个原点的位置。我只须说明,我从原点出发,向“右”走然后向“上”走,必须经过多少根杆子才能到达所考虑的正方形的隅角。这两个数就是这个隅角相对于由排列小杆而确定的“笛卡儿坐标系”的“笛卡儿坐标”。
  如果将这个抽象的实验作如下改变,我们就会认识到一定会出现这种实验下能成功的情况。我们假定这些杆于是会:“膨胀”的,膨胀的量值与温度升高的量值成正比。我们将石板的中心部分加热,但周围不加热,在这个情况下,我们仍然能够使两根小杆在桌面上的每一个位置上相互重合。但是在加热期间我们的正方形作图就必然会受到扰乱,口为放在桌面中心部分的小杆膨胀了,而放在外围部分的小杆则不膨胀。
  对于我们的小杆——定义为单位长度——而言,这块石板不再是一个欧几里得连续区,而且我们也不再能够直接借助于这些小杆来定义笛卡儿坐标,困为上述的作图法已无法实现了。但是由于有一些其他的事物并不象这些小杆那样受桌子温度的影响(或许丝毫不受影响),因而我们有可能十分自然地支持这样的观点,即这块石板仍是一个“欧几里得连续区”,为此我们必须对长度的量度或比较作一更为巧妙的约定,才能够满意地实现这个欧几里得连续区。
  但是如果把各种杆子(亦即用各种材料做成的杆子)放在加热不均匀的石板 上时它们对温度的反应都一样,并且如果除了杆子在与上述实验相类似的实验中的几何得为之外没有其他的方法来探测温度的疚,那么最好的办法就是:只要我们能够使杆子中一根的两端与石板上的两点相重合,我们就规定该两点之间的距
  离为1;因为,如果不这样做,我们又应该如何来下距离的定义才不致在极大的程度上犯粗略任意的错误呢?这样我们就必须舍弃笛卡儿坐标的方法,而代之以不承认欧几里得几何学对刚体的有效性的另一种方法。读者将会注意到,这里所描述的局面与广义相对性公设所引起的局面(第23节)是一致的。
  25.高斯坐标
  按照高斯的论述,这种分析方法与几何方法结合起来的处理问题的方式可由下述途径达成,设想我们在桌面上画一个任意曲线系(见图4)。 V=1V=3V=2U=1PU=2图 4
  我们把这些曲线称作u曲线,并用一个数来标明每一根曲线,在图中画出了曲线u=1;u=2和u=3; 我们必须设想在曲线u=1;u=2 之间画有无限多根曲线,所有这些曲线对应于1和2之间的实数,这样我们就有一个u曲线系,而且这个“无限稠密”曲线系布满了整个桌面,这些u曲线必须彼此不相交,并且桌面上的每一点都必须有一根而且仅有一根曲线通过。因此大理石板面上的每一个点都具有一个完全确定的u值。我们设想以同样的方式在这个石板面上画一个v曲线系。这些曲线所满足的条件与u曲线相同,并以相应的方式标以数字,而且它们也同样可以具有任意的形状,因此,桌面上的每一点就有一个u值和一个v值。我们把这两个数称为桌面的坐标(高斯坐标),例如图中的P点就有高斯坐标u=3; v=1。这样,桌面上相邻两点P和P’就对应于坐标
  P: u;v
  dvvduuP++′;:
  其中du和dv标记很小的数。同样,我们可以用一个很小的数ds表示P和P’之间的距离(线间隔),好象用一根小杆测量得出的一样。于是,按照高斯的论述,我们就有
  2221221122dvgdudvgdugds++=
  其中g11;g12;g22是以完全确定的方式取决于u和v的量。量 g11;g12;g22决定小杆相对于u曲线和v曲线的行为,因而也就决定小杆相对于桌面的行为。对于所考虑的面上的诸点相对于量杆构成一个欧几里得连续区的情况,而且只有在这个情况下,我们才能够简单地按下式来画出以及用数字标出u曲线和v曲线:
  222dvduds+=
  在这样的条件下,u曲线和v曲线就是欧几里得几何学中的直线,并且它们是相互垂直的。在这里,高斯坐标也就成为笛卡儿坐标。显然,高斯坐标只不过是两组数与所考虑的面上的诸点的一种缔合,这种缔合具有这样的性质,即彼此相差很微小的数值各与“空间中”相邻诸点相缔合。
  到目前为止,这些论述对于二维连续区是成立的。但是高斯的方法也可以应用到三维、四维或维数更多的连续区。例如,如果假定我们有一个四维连续区,我们就可以用下述方法来表示这个连续区,对于这个连续区的每一个点,我们任意地把四个数x1;x2;x3;x4与之相缔合,这四个数就称为“坐标”。相邻的点对应于相邻的坐标值。如果距离ds与相邻点P和P’相缔合,而且从物理的观点来看这个距离是可以测量的和明确规定了的,那么下述公式成立:
  24442112211122dxgdxdxgdxgds+++=Λ
  其中g11等量的值随连续区中的位置而变。唯有当这个连续区是一个欧几里得连续区时才有可能将坐标 x1??x4与这个连续区的点简单地缔合起来,使得我们有
  242322212dxdxdxdxds+++=
  在这个情况下,与那些适用于我们的三维测量的关系相似的一些关系就能够适用于这个四维连续区。
  但是我们在上面提出的表达ds2的高斯方法并不是经常可能的,只有当所考虑的连续区的各个足够小的区域被当作是欧几里得连续区时,这种方法才有可能。例如,就大理石桌面和局部温度变化的例子而言,这一点显然是成立的。对于石板的一小部分面积而言,温度在实际上可视为恒量;因而小杆的几何行为差不多能够符合欧几里得几何学的法则。因此,前节所述正方形作图法的缺陷要到
  这个作图扩展到了占桌面相当大的一部分时才会明显地表现出来。
  我们可以对此总结如下:高斯发明了对一般连续区作数学表述的方法,在表述中下了“大小关系”(邻点间的“距离”)的定义。对于一个连续区的每一个点可标以若干个数(高斯坐标),这个连续区有多少维,就标多少个数。这是这样来做的:每个点上所标的数只可能有一个意义,并且相邻诸点应该用彼此相差一个无穷小量的数(高斯坐标)来标出。高斯坐标系是笛卡儿坐标系的一个逻辑推广。高斯坐标系也可以适用于非欧几里得连续区,但是只有在下述情况下才可以,即相对于既定的“大小”或“距离“的定义而言,我们所考虑的连续区的各个小的部分愈小,其表现就愈象一个真正的欧几里得系统。
  26.狭义相对论的空时连续区可以当作欧几里得连续区
  现在我们已有可能更 严谨地表述闵可夫斯基的观念,这个观念在第17节中只是含糊地谈到一个。按照狭义相对论,要优先用某些坐标系来描述四维空时连续区。我们把这些坐标系称为“伽利略坐标系”。对于这些坐标系,确定一个事件或者换言之确定四维连续区中一个点所用的四个坐标x;y;z;t;在物理意义上具有简单的定义,这在一书第一部分已有所详述。从一个伽利略坐标过渡到相对于这个坐标系作匀速运动的另一个伽利略坐标系时,洛伦兹变换方程是完全有效的。这些洛伦兹变换方程构成了从狭义相对论导出推论的基础,而这些议
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架